热解温度对油菜秸秆炭理化特性及孔隙结构的影响Physiochemical properties and pore structure of rape straw biochar under different pyrolyzed temperatures
周涵君,于晓娜,孟琦,马明,王鹏,张胜,叶协锋
摘要(Abstract):
以农业废弃物油菜秸秆为原料,采用低氧升温炭化法,在不同热解温度(300,400,500,600,700℃)下分别炭化2 h,制备生物炭,收集并测定固体产物生物炭特性及孔隙结构。结果表明,随着热解温度的升高,油菜秸秆生物炭p H值逐渐增加,当温度达到400℃及400℃以上时呈碱性甚至强碱性。热解温度高于400℃时,油菜秸秆生物炭的矿质元素含量相对富集,表面碱性含氧官能团增加、酸性含氧官能团减少。阳离子交换量在400~500℃条件下达到较高水平,为77.39~80.00 cmol·kg-1。红外光谱表明,热解温度高于300℃时,油菜秸秆的芳香基团开始形成。随着热解温度的升高,油菜秸秆生物炭的比表面积和比孔容均是先变大后变小,在400~500℃条件下孔隙结构的发育和孔体积的形成比较好,具有较大的比表面积和比孔容,生物炭产出率相对较高,养分损失少,生物炭的理化性能、养分利用及孔隙结构均达到最优。
关键词(KeyWords): 油菜秸秆;生物炭;热解温度;理化特性;孔隙结构
基金项目(Foundation): 烟草行业烟草栽培重点实验室项目(30800665);; 河南省烟草公司项目(HYKJ201301);; 重庆市烟草公司项目(NY20140401070010)
作者(Author): 周涵君,于晓娜,孟琦,马明,王鹏,张胜,叶协锋
DOI: 10.16445/j.cnki.1000-2340.2018.06.019
参考文献(References):
- [1]BEESLEY L,MORENO-JIMNEZ E,GOMEZ-EYLES J L,et al.A review of biochars'potential role in the remediation,revegetation and restoration of contaminated soils[J].Environmental Pollution,2011,159(12):3269-3282.
- [2]何绪生,张树清,佘雕,等.生物炭对土壤肥料的作用及未来研究[J].中国农学通报,2011,27(15):16-25.
- [3]ZHANG X K,WANG H L,HEL Z,et al.Using biochar for remediation of soils contaminated with heavymetal sand or ganic pollutants[J].Environmental Science and Pollution Research,2013,20(12):8472-8483.
- [4]袁金华,徐仁扣.生物质炭的性质及其对土壤环境功能影响的研究进展[J].生态环境学报,2011,20(4):779-785.
- [5]WANG C,LU H H,DONG D,et al.Insight into the effects of biochar on manure composting:evidence supporting the relationship between N2O emission and denitrifying community[J].Environmental Science and Technology,2013,47(13):7341-7349.
- [6]李飞跃,汪建飞.中国粮食作物秸秆焚烧排碳量及转化生物炭固碳量的估算[J].农业工程学报,2013,29(14):1-7.
- [7]ZHAO L,CAO X D,MASEK O,et al.Heterogeneity of biochar properties as a function of feedstock sources and production temperatures[J].Journal of Hazardous Materials,2013,256/257(1):1-9.
- [8]姚红宇,唐光木,葛春辉,等.炭化温度和时间与棉杆炭特性及元素组成的相关关系[J].农业工程学报,2013,29(7):199-206.
- [9]罗煜,赵立欣,孟海波,等.不同温度下热裂解芒草生物质炭的理化特征分析[J].农业工程学报,2013,29(13):208-217.
- [10]ALWABEL M I,ALOMRAN A,EL-NAGGAR A H,et al.Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J].Bioresource Technology,2013,131(3):374-379.
- [11]OLIVEIRA I,BLOHSE D,RAMKE H G.Hydrothermal carbonization of agricultural residues[J].Bioresource Technology,2013,142(4):138-146.
- [12]YUAN J H,XU R K.The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol[J].Soil Use and Management,2011,27(1):110-115.
- [13]YU X Y,YING G G,KOOKANA R S.Sorption and desorption behaviors of diuron in soils amended with charcoal[J].Journal of Agriculture and Food Chemistry,2006,54(22):8545-8550.
- [14]CHUN Y,SHENG G,CHIOU C T,et al.Compositions and sorptive properties of crop residue-derived chars[J].Environmental Science&Technology,2004,38(17):4649-4655.
- [15]ALEXIS M A,RASSE D P,RUMPEL C,et al.Fire impact on C and N losses and charcoal production in a scrub oak ecosystem[J].Biogeochemistry,2007,82(2):201-216.
- [16]FAO.Faostat:Production,crops[DB/OL].[2016-07-05].http://faostat3.fao.org/download/Q/QC/E.
- [17]俞宁,蔡忆昔,李小华,等.HZSM-5分子筛催化热裂解油菜秸秆制取精制生物油[J].农业工程学报,2014,30(15):264-271.
- [18]刘标,陈应泉,孟海波,等.棉秆和油菜秆热解焦炭的燃烧与吸附特性[J].农业工程学报,2014,30(10):193-200.
- [19]樊永胜,蔡忆昔,李小华,等.真空热解工艺参数对生物油产率的影响研究[J].林产化学与工业,2014,34(1):79-85.
- [20]张连科,刘心宇,王维大,等.油料作物秸秆生物炭对水体中铅离子的吸附特性与机制[J].农业工程学报,2018,34(7):218-226.
- [21]陆畅,徐畅,黄容,等.秸秆和生物炭对油菜-玉米轮作下紫色土有机碳及碳库管理指数的影响[J].草业科学,2018,35(3):482-490.
- [22]YUAN J H,XU R K,ZHANG H.The forms of alkalis in the biochar produced from crop residues at different temperatures[J].Bioresource Technology,2011,102(3):3488-3497.
- [23]CHENG C H,LEHMANN J,THIES J E,et al.Oxidation of black carbon by biotic and abiotic processes[J].Organic Geochemistry,2006,37(11):1477-1488.
- [24]BOEHM H P.Some aspects of the surface chemistry of carbon blacks and other carbons[J].Carbon NY,1994,32(5):759-769.
- [25]毛磊,童仕唐,王宇.对用于活性炭表面含氧官能团分析的Boehm滴定法的几点讨论[J].炭素技术,2011,30(2):17-19.
- [26]LOWELL S.Automatic volumetric sorption analyzer[P].US:73/865.5,1986-01-28.
- [27]SAHOULI B,BLACHER S,BROUERS F.Fractal surface analysis by using nitrogen adsorption data:?the case of the capillary condensation regime.Langmuir,1996,12(11):2872-2874.
- [28]PFEIFER P.Erratum:chemistry in noninteger dimensions between two and three I.Fractal theory of heterogeneous surfaces[J].Journal of Chemical Physics,1983,79(7):3558-3565.
- [29]SING K S W,EVERETT D H,HAUL R A W,et al.Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity(recommendations 1984)[J].Pure and Applied Chemistry,2013,57(4):603-619.
- [30]陈伟,杨海平,刘标,等.温度对竹屑热解多联产产物特性的影响[J].农业工程学报,2014,30(22):245-252.
- [31]简敏菲,高凯芳,余厚平.不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J].环境科学学报,2016,36(5):1757-1765.
- [32]袁金华,徐仁扣.稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报,2010,26(5):472-476.
- [33]叶协锋,周涵君,于晓娜,等.热解温度对玉米秸秆炭产率及理化特性的影响[J].植物营养与肥料学报,2017,23(5):1268-1275.
- [34]何云勇,李心清,杨放,等.裂解温度对新疆棉秆生物炭物理化学性质的影响[J].地球与环境,2016,44(1):19-24.
- [35]LEE J W,KIDDER M,EVANS B R,et al.Characterization of biochars produced from cornstovers for soil amendment[J].Environmental Science and Technology,2010,44(20):7970-7974.
- [36]SEVILLA M,FUERTES A B.Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J].Chemistry,2009,15(16):4195-4203.