白花泡桐NCED基因家族分析及其对丛枝植原体的响应Analysis of the NCED gene family in Paulownia fortunei and their responses to witches’ broom phytoplasmas
徐赛赛,曹亚兵,曹喜兵,董洋,翟晓巧,范国强
摘要(Abstract):
【目的】研究NCED家族基因在泡桐丛枝病发生过程中的作用。【方法】基于白花泡桐(Paulownia fortune)基因组图谱,采用生物信息学方法对白花泡桐NCED(PfNCED)家族进行成员鉴定,系统进化、基因结构和启动子顺式作用元件进行分析,并结合转录组、实时定量PCR和互作蛋白预测等方法筛选与丛枝病发生相关基因。【结果】发现PfNCED家族共有28个基因,分布在8条染色体上;进化树分析结果表明该家族基因可以分为4组,与拟南芥的同源性较高;共线性分析发现该家族发生5次片段复制事件;顺式作用元件表明PfNCED可能响应植物激素处理和环境胁迫。结合丛枝病发生前后的转录组分析,发现7个差异PfNCED可能与泡桐丛枝病发生相关;进一步的蛋白互作网络分析发现PfNCED16可能在丛枝病腋芽形成中发挥重要作用。【结论】白花泡桐中有28个PfNCED基因,其中PfNCED16可能在白花泡桐丛枝形成过程中发挥重要作用。
关键词(KeyWords): 泡桐丛枝病;9-顺式-环氧类胡萝卜素双加氧酶(NCED);基因表达;进化分析;蛋白互作
基金项目(Foundation): 中原学者科家工作室建设专项项目(豫科[2018]185);; 中原科技创新领军人才项目(224200510010)
作者(Author): 徐赛赛,曹亚兵,曹喜兵,董洋,翟晓巧,范国强
参考文献(References):
- [1] SCHWARTZ S H,QIN X,ZEEVAART J A.Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants,genes,and enzymes[J].Plant Physiology,2003,131(4):1591-1601.
- [2] PRIYA R,SNEHA P,DASS J F P,et al.Exploring the codon patterns between CCD and NCED genes among different plant species[J].Computers in Biology and Medicine,2019,114:103449.
- [3] TAN B C,SCHWARTZ S H,ZEEVAART J A,et al.Genetic control of abscisic acid biosynthesis in maize[J].Proceedings of the National Academy of Sciences,1997,94(22):12235-12240.
- [4] LI Q H,YU X T,CHEN L,et al.Genome-wide identification and expression analysis of the NCED family in Cotton (Gossypium hirsutum L.) [J].PLoS One,2021,16(2):e0246021.
- [5] 尹欣幸,卢丽兰,范海阔.椰子NCED2基因克隆及逆境响应表达分析[J].分子植物育种,2022,20(3):794-801.YIN X X,LU L L,FAN H K.Cloning and abiotic stress-induced expression of NCED2 gene of coconut (Cocos nucifera L.)[J].Molecular Plant Breeding,2022,20(3):794-801.
- [6] 刘建汀,曾美娟,温文旭,等.西葫芦9-顺式-环氧类胡萝卜素双加氧酶CpNCED2基因的克隆及其干旱响应模式研究[J].核农学报,2021,35(8):1751-1760.LIU J T,ZENG M J,WEN W X,et al.Cloning and drought response pattern of CpNCED2,a 9-cis-epoxycarotenoid dioxygenase gene from Zucchini(Cucurbita pepo L.)[J].Journal of Nuclear Agricultural Sciences,2021,35(8):1751-1760.
- [7] LI T,SUN J K,LI C,et al.Cloning and expression analysis of the FvNCED3 gene and its promoter from ash (Fraxinus velutina)[J].Journal of Forestry Research,2019,30(2):471-482.
- [8] LONG Q,XIE Y,HE Y R,et al.Abscisic acid promotes jasmonic acid accumulation and plays a key role in citrus canker development[J].Frontiers in Plant Science,2019,10:1634.
- [9] 田梦君,杨攀,张硕,等.马铃薯NCED基因家族全基因组鉴定与表达分析[J/OL].分子植物育种:1-10[2022-03-11].http://kns.cnki.net/kcms/detail/46.1068.S.20210513.1336.012.html.TIAN M J,YANG P,ZHANG S,et al.Genome-wide identification and expression analysis of the NCED gene family in potato[J/OL].Molecular Plant Breeding:1-10[2022-03-11].http://kns.cnki.net/kcms/detail/ 46.1068.S.20210513.1336.012.html.
- [10] 林涛,任丹丹,张克岩,等.甜瓜NCED基因家族的鉴定及CGMMV侵染后的表达模式[J/OL].分子植物育种:1-10[2022-03-11].http://kns.cnki.net/kcms/detail/46.1068.s.20220209.1656.010.html.LIN T,REN D D,ZHANG K Y,et al.Identification of melon NCED gene family and its expression model on CGMMV infection[J/OL].Molecular Plant Breeding:1-10[2022-03-11].http://kns.cnki.net/kcms/detail/ 46.1068.s.20220209.1656.010.html.
- [11] LIU X,HU Q L,YAN J J,et al.ζ-Carotene isomerase suppresses tillering in rice through the coordinated biosynthesis of strigolactone and abscisic acid[J].Molecular Plant,2020,13(12):1784-1801.
- [12] LUO L,TAKAHASHI M,KAMEOKA H,et al.Developmental analysis of the early steps in strigolactone-mediated axillary bud dormancy in rice[J].The Plant Journal,2019,97(6):1006-1021.
- [13] KEBROM T H,MULLET J E.Transcriptome profiling of tiller buds provides new insights into phyB regulation of tillering and indeterminate growth in sorghum[J].PlantPhysiology,2016,170(4):2232-2250.
- [14] CAO X B,FAN G Q,ZHAO Z L,et al.Morphological changes of Paulownia seedlings infected phytoplasmas reveal the genes associated with witches’ broom through AFLP and MSAP[J].PLoS One,2014,9(11):e112533.
- [15] IPEKCI Z,GOZUKIRMIZI N.Direct somatic embryogenesis and synthetic seed production from Paulownia elongata[J].Plant Cell Reports,2003,22(1):16-24.
- [16] 赵振利,张靖曼,郑秋莉,等.白花泡桐丛枝病发生过程中全基因组DNA甲基化差异分析[J].河南农业大学学报,2020,54(3):400-407.ZHAO Z L,ZHANG J M,ZHENG Q L,et al.Difference analysis of DNA methylation in the whole genome of Paulownia fortunei during the occurrence of PaWB[J].Journal of Henan Agricultural University,2020,54(3):400-407.
- [17] FAN G Q,CAO Y B,DENG M J,et al.Identification and dynamic expression profiling of micrornas and target genes of Paulownia tomentosa in response to paulownia witches’ broom disease[J].Acta Physiologiae Plantarum,2017,39(1):1-9.
- [18] CAO Y B,FAN G Q,WANG Z,et al.Phytoplasma-induced changes in the acetylome and succinylome of Paulownia tomentosa provide evidence for involvement of acetylated proteins in witches’ broom disease [J].Molecular & Cellular Proteomics,2019,18(6):1210-1226.
- [19] CAO Y B,SUN G L,ZHAI X Q,et al.Genomic insights into the fast growth of paulownias and the formation of Paulownia witches’ broom[J].Molecular Plant,2021,14(10):1668-1682.
- [20] FAN G Q,DONG Y P,DENG M J,et al.Plant-pathogen interaction,circadian rhythm,and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei[J].International Journal of Molecular Sciences,2014,15(12):23141-23162.
- [21] FAN G Q,WANG Z,ZHAI X Q,et al.ceRNA Cross-Talk in Paulownia Witches’ Broom Disease[J].International Journal of Molecular Sciences,2018,19(8):2463.
- [22] Cao X B,Fan G Q,Dong Y P,et al.Proteome profiling of Paulownia seedlings infected with phytoplasma[J].Frontiers in Plant Science.2017,8:342.
- [23] FAN G Q,CAO X B,ZHAO Z L,et al.Transcriptome analysis of the genes related to the morphological changes of Paulownia tomentosa plantlets infected with phytoplasma[J].Acta Physiologiae Plantarum,2015,37(10):1-12.
- [24] WHEELER T J,EDDY S R.nhmmer:DNA homology search with profile HMMs[J].Bioinformatics,2013,29(19):2487-2489.
- [25] ARTIMO P,JONNALAGEDDA M,Arnold K,et al.ExPASy:SIB bioinformatics resource portal[J].Nucleic Acids Research,2012,40(Web Server issue):597-603.
- [26] KUMAR S,STECHER G,TAMURA K.MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J].Molecular Biology and Evolution,2016,33(7):1870-1874.
- [27] BAILEY T L,BODEN M,BUSKE F A,et al.MEME SUITE:tools for motif discovery and searching[J].Nucleic Acids Research,2009,37(Web Server issue):202-208.
- [28] CHEN C J,CHEN H,ZHANG Y,et al.TBtools:an integrative toolkit developed for interactive analyses of big biological data[J].Molecular Plant,2020,13(8):1194-1202.
- [29] LESCOT M,DéHAIS P,THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,2002,30(1):325-327.
- [30] LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method[J].Methods,2001,25(4):402-408.
- [31] SZKLARCZYK D,FRANCESCHINI A,KUHN M,et al.The STRING database in 2011:functional interaction networks of proteins,globally integrated and scored[J].Nucleic Acids Research,2011,39 (Database issue):561-568.
- [32] SHANNON P,MARKIEL A,OZIER O,et al.Cytoscape:a software environment for integrated models of biomolecular interaction networks[J].Genome Research,2003,13(11):2498-2504.
- [33] YANG Z,BIELAWSKI J P.Statistical methods for detecting molecular adaptation[J].Trends in Ecology & Evolution,2000,15(12):496-503.
- [34] 王哲.白花泡桐丛枝病发生相关ceRNA研究[D].郑州:河南农业大学,2020.WANG Z.Research of ceRNA related to the occurrence of Paulownia fortunei witches’ broom[D].Zhengzhou:Henan Agricultural University,2020.
- [35] STIRNBERG P,VAN D E S K,LEYSER H.MAX1 and MAX2 control shoot lateral branching in Arabidopsis[J].Development,2002,129(5):1131-1141.
- [36] LIN H,WANG R X,QIAN Q,et al.DWARF27,an iron-containing protein required for the biosynthesis of strigolactones,regulates rice tiller bud outgrowth[J].Plant Cell,2009,21(5):1512-1525.
- [37] ABE S,SADO A,TANAKA K,et al.Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro[J].Proceedings of the National Academy of Sciences,2014,111(50):18084-18089.
- [38] WEI Z,WANG Z,LI X Y,et al.Comparative proteomic analysis of Paulownia fortunei response to phytoplasma infection with dimethyl sulfate treatment[J].International Journal of Genomics,2017,2017:6542075.
- [39] 白戈,杨大海,姚恒,等.烟草NtNCED基因的鉴定分析[J].分子植物育种,2017,15(10):3907-3912.BAI G,YANG D H,YAO HENG,et al.Identification and analysis of NtNCED gene in tobacco[J].Molecular Plant Breeding,2017,15(10):3907-3912.
- [40] 王小龙,刘凤之,史祥宾,等.葡萄NCED基因家族进化及表达分析[J].植物学报,2019,54(4):474-485.WANG X L,LIU F Z,SHI X B,et al.Evolution and expression of NCED family genes in Vitis vinifera[J].Chinese Bulletin of Botany,2019,54(4):474-485.
- [41] CANNON S B,MITRA A,BAUMGARTEN A,et al.The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana[J].BMC Plant Biology,2004,4(1):1-21.
- [42] GU Z L,STEINMETZ L M,GU X,et al.Role of duplicate genes in genetic robustness against null mutations[J].Nature,2003,421(6918):63-66.
- [43] 赵琳,王阔,李欣,等.大豆GmGBP1-i植株开花后光周期反应及农艺性状分析[J].东北农业大学学报,2019,50(3):12-17.ZHAO L,WANG K,LI X,et al.Photoperiod response of soybean GmGBP1 gene interference plant after flowering and agronomical characters analysis[J].Journal of Northeast Agricultural University,2019,50(3):12-17.
- [44] TIAN R Z,YANG Y,CHEN M H.Genome-wide survey of the amino acid transporter gene family in wheat (Triticum aestivum L.):identification,expression analysis and response to abiotic stress[J].International Journal of Biological Macromolecules,2020,162:1372-1387.
- [45] PRIYA R,SIVA R.Analysis of phylogenetic and functional diverge in plant ninecis epoxycarotenoid dioxyge-nase gene family[J].Journal of Plant Research,2015,128(4):519-534.
- [46] REDDY S K,HOLALU S V,CASAL J J,et al.Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light[J].Plant Physiology,2013,163(2):1047-1058.