579 | 0 | 390 |
下载次数 | 被引频次 | 阅读次数 |
【目的】创建小麦TaMBD9基因敲除材料,探讨该基因在小麦生长发育调控过程中的生物学功能。【方法】利用实时定量反转录聚合酶链反应(quantitative reverse transcription polymerase chain reaction, qRT-PCR)分析TaMBD9的表达特性,通过CRISPR-Cas9介导的基因编辑技术创建基因敲除小麦材料。【结果】表达分析显示,TaMBD9在小麦不同组织间存在差异表达,其中叶片中的表达量最高,且随发育进程有所波动。3个部分同源基因间表达水平存在一定差异,其中TaMBD9D的表达水平较高。获得了TaMBD9的3个部分同源基因均成功敲除的纯合突变小麦材料。表型分析发现,TaMBD9敲除导致小麦叶夹角明显增大。【结论】小麦TaMBD9在叶夹角调控过程中发挥重要功能。研究获得了TaMBD9基因敲除纯合株系,为开展小麦叶夹角分子调控机制研究提供了新材料。
Abstract:【Objective】To obtain gene knockout materials of TaMBD9 and explore its biological function in the regulation of growth and development in wheat. 【Method】The expression pattern of TaMBD9was analyzed by qRT-PCR and the gene knockout wheat materials were created by CRISPR-Cas9-mediated gene editing technology. 【Result】The expression analysis showed that TaMBD9 was differentially expressed among wheat tissues with the highest expression level in leaves, and its expression in leaves fluctuated with the development process. There were some differences in the expression levels among three homoeologs, and the expression level of TaMBD9D was higher than that of the other two homoeologs in detected tissues. The homozygous wheat mutants were obtained by sucessfully knocking out all three homoeologs of TaMBD9. Phenotypic analysis demonstrated that the knockout of TaMBD9 resulted in a significant increase of leaf angle in wheat. 【Conclusion】The TaMBD9 plays an important role in the regulation of leaf angle in wheat, and the obtained gene knockout lines of TaMBD9 provides new materials for further exploring the molecular regulatory mechanisms of leaf angle in wheat.
[1] CAO Y Y, ZHONG Z J, WANG H Y, et al. Leaf angle:a target of genetic improvement in cereal crops tailored for high-density planting[J]. Plant Biotechnology Journal, 2022, 20(3):426-436.
[2] LI X, WU P F, LU Y, et al. Synergistic interaction of phytohormones in determining leaf angle in crops[J].International Journal of Molecular Sciences, 2020, 21(14):5052.
[3] SAKAMOTO T, MORINAKA Y, OHNISHI T, et al.Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nature Biotechnology, 2006, 24(1):105-109.
[4] LUO X Y, ZHENG J S, HUANG R Y, et al. Phytohormones signaling and crosstalk regulating leaf angle in rice[J]. Plant Cell Reports, 2016, 35(12):2423-2433.
[5] ZHANG C, BAI M Y, CHONG K. Brassinosteroidmediated regulation of agronomic traits in rice[J]. Plant Cell Reports, 2014, 33(5):683-696.
[6] LI D, WANG L, WANG M, et al. Engineering OsBAK1gene as a molecular tool to improve rice architecture for high yield[J]. Plant Biotechnology Journal, 2009,7(8):791-806.
[7] KIR G, YE H X, NELISSEN H, et al. RNA interference knockdown of brassionsteroid insensitive1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture[J]. Plant Physiology,2015, 169(1):826-839.
[8] CAO Y Y, ZENG H X, KU L X, et al. ZmIBH1-1regulates plant architecture in maize[J]. Journal of Experimental Botany, 2020, 71(10):2943-2955.
[9] REN Z Z, WU L C, KU L X, et al. ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize[J]. Plant Biotechnology Journal, 2020, 18(4):881-883.
[10] SHIMADA A, UEGUCHI-TANAKA M, SAKAMOTO T, et al. The rice Spindly gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis[J]. The Plant Journal, 2006, 48(3):390-402.
[11] TANG Y Y, LIU H H, GUO S Y, et al. OsmiR396d affects gibberellin and brassinosteroid signaling to regulate plant architecture in rice[J]. Plant Physiology,2018, 176(1):946-959.
[12] XIAO Y G, CHEN Y, CHARNIKHOVA T, et al.OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice[J]. Plant Molecular Biology,2014, 86(1/2):19-33.
[13] LI H C, WANG L J, LIU M S, et al. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7[J]. Plant Physiology, 2020, 183(3):1184-1199.
[14] SALLAM A, AWADALLA R A, ELSHAMY M M, et al. Genome-wide analysis for root and leaf architecture traits associated with drought tolerance at the seedling stage in a highly ecologically diverse wheat population[J]. Computational and Structural Biotechnology Journal, 2024, 23:870-882.
[15] NIU J Q, SI Y Q, TIAN S Q, et al. A Wheat 660 K SNP array-based high-density genetic map facilitates QTL mapping of flag leaf-related traits in wheat[J].TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2023, 136(3):51.
[16] DU B B, WU J, ISLAM M S, et al. Genome-wide metaanalysis of QTL for morphological related traits of flag leaf in bread wheat[J]. PLoS One, 2022, 17(10):e0276602.
[17] LIU J J, ZHOU J G, TANG H P, et al. A major vernalization-independent QTL for tiller angle on chromosome arm 2BL in bread wheat[J]. The Crop Journal,2022, 10(1):185-193.
[18] CHEN S L, LIU F, WU W X, et al. A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat(Triticum aestivum L.)[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2021, 134(12):3895-3909.
[19] ZHAO L, ZHENG Y T, WANG Y, et al. A HST1-like gene controls tiller angle through regulating endogenous auxin in common wheat[J]. Plant Biotechnology Journal, 2023, 21(1):122-135.
[20] FU L, YAN D, GAO L F, et al. TaIAA15 genes regulate plant architecture in wheat[J]. Journal of Integrative Agriculture, 2022, 21(5):1243-1252.
[21] LIU K Y, CAO J, YU K H, et al. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling[J]. Plant Physiology, 2019, 181(1):179-194.
[22] ZHAO L, YANG Y M, CHEN J C, et al. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat[J]. Genome Biology, 2023, 24(1):7.
[23] WU Z B, CHEN S Z, ZHOU M Q, et al. Family-wide characterization of methylated DNA binding ability of Arabidopsis MBDs[J]. Journal of Molecular Biology,2022, 434(2):167404.
[24] STANGELAND B, ROSENHAVE E M, WINGE P, et al. AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana[J]. Physiologia Plantarum, 2009, 136(1):110-126.
[25] BERG A, MEZA T J, MAHI?M, et al. Ten members of the Arabidopsis gene family encoding methyl-CpGbinding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development[J]. Nucleic Acids Research, 2003, 31(18):5291-5304.
[26] YAISH M W F, PENG M S, ROTHSTEIN S J.AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation[J]. The Plant Journal:for Cell and Molecular Biology, 2009, 59(1):123-135.
[27] QIAN Y X, REN Q Y, JIANG L Y, et al. Genomewide analysis of maize MBD gene family and expression profiling under abiotic stress treatment at the seedling stage[J]. Plant Biotechnology Reports, 2020, 14(3):323-338.
[28] SPRINGER N M, KAEPPLER S M. Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins[J]. Plant Physiology, 2005, 138(1):92-104.
[29] SONG Y Y, TANG Y Y, LIU L T, et al. The methylCpG-binding domain family member PEM1 is essential for Ubisch body formation and pollen exine development in rice[J]. The Plant Journal:for Cell and Molecular Biology, 2022, 111(5):1283-1295.
[30] QU M Y, ZHANG Z J, LIANG T M, et al. Overexpression of a methyl-CpG-binding protein gene OsMBD707leads to larger tiller angles and reduced photoperiod sensitivity in rice[J]. BMC Plant Biology, 2021, 21(1):100.
[31] LI Y C, MENG F R, YIN J, et al. Isolation and comparative expression analysis of six MBD genes in wheat[J]. Biochimica et Biophysica Acta, 2008, 1779(2):90-98.
[32]张新宁,邢真真,李静,等.小麦MBD基因家族的鉴定和特征分析[J].西北植物学报,2021, 41(5):746-756.ZHANG X N, XING Z Z, LI J, et al. Identification and characterization of MBD gene family in wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(5):746-756.
[33] SHI R J, ZHANG J H, LI J Y, et al. Cloning and characterization of TaMBD6 homeologues encoding methyl-CpG-binding domain proteins in wheat[J]. Plant Physiology and Biochemistry:PPB, 2016, 109:1-8.
[34] LIU Q, WANG C, JIAO X Z, et al. Hi-TOM:a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems[J]. Science China Life Sciences, 2019, 62(1):1-7.
[35]周元刚,姚宁,冯浩,等.冬小麦叶片形状系数的变异性[J].干旱地区农业研究,2017, 35(5):1-7.ZHOU Y G, YAO N, FENG H, et al. Variations of leaf shape coefficients of winter wheat[J]. Agricultural Research in the Arid Areas, 2017, 35(5):1-7.
[36] WANG M Y, LI Z J, ZHANG Y E, et al. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses[J]. The Plant Cell, 2021, 33(4):865-881.
[37] ZHANG L H, HE C, LAI Y T, et al. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis[J]. Genome Biology, 2023, 24(1):65.
[38] QIN L, HAO C Y, HOU J, et al. Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2[J]. BMC Plant Biology, 2014, 14:107.
[39] CAO J, LIU K Y, SONG W J, et al. Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture[J]. Planta, 2021, 253(2):44.
[40] HU Z R, YU Y, WANG R, et al. Expression divergence of TaMBD2 homoeologous genes encoding methyl CpG-binding domain proteins in wheat(Triticum aestivum L.)[J]. Gene, 2011, 471(1/2):13-18.
[41] ZHANG Y Y, LI Z J, LIU J Y, et al. Transposable elements orchestrate subgenome-convergent and-divergent transcription in common wheat[J]. Nature Communications, 2022, 13(1):6940.
[42] HIGO A, SAIHARA N, MIURA F, et al. DNA methylation is reconfigured at the onset of reproduction in rice shoot apical meristem[J]. Nature Communications,2020, 11(1):4079.
基本信息:
DOI:10.16445/j.cnki.1000-2340.20240517.001
中图分类号:S512.1
引用信息:
[1]范姗姗,杜金强,张新宁等.小麦TaMBD9基因敲除及其对叶夹角的影响[J].河南农业大学学报,2025,59(01):29-37.DOI:10.16445/j.cnki.1000-2340.20240517.001.
基金信息:
国家重点研发计划项目(2017YFD0301100); 中原学者工作站项目(234400510009)