河南农业大学生命科学学院;河南农业大学农学院/国家小麦工程技术研究中心;
【目的】创建小麦TaMBD9基因敲除材料,探讨该基因在小麦生长发育调控过程中的生物学功能。【方法】利用实时定量反转录聚合酶链反应(quantitative reverse transcription polymerase chain reaction, qRT-PCR)分析TaMBD9的表达特性,通过CRISPR-Cas9介导的基因编辑技术创建基因敲除小麦材料。【结果】表达分析显示,TaMBD9在小麦不同组织间存在差异表达,其中叶片中的表达量最高,且随发育进程有所波动。3个部分同源基因间表达水平存在一定差异,其中TaMBD9D的表达水平较高。获得了TaMBD9的3个部分同源基因均成功敲除的纯合突变小麦材料。表型分析发现,TaMBD9敲除导致小麦叶夹角明显增大。【结论】小麦TaMBD9在叶夹角调控过程中发挥重要功能。研究获得了TaMBD9基因敲除纯合株系,为开展小麦叶夹角分子调控机制研究提供了新材料。
475 | 0 | 214 |
下载次数 | 被引频次 | 阅读次数 |
[2] LI X, WU P F, LU Y, et al. Synergistic interaction of phytohormones in determining leaf angle in crops[J].International Journal of Molecular Sciences, 2020, 21(14):5052.
[3] SAKAMOTO T, MORINAKA Y, OHNISHI T, et al.Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice[J]. Nature Biotechnology, 2006, 24(1):105-109.
[4] LUO X Y, ZHENG J S, HUANG R Y, et al. Phytohormones signaling and crosstalk regulating leaf angle in rice[J]. Plant Cell Reports, 2016, 35(12):2423-2433.
[5] ZHANG C, BAI M Y, CHONG K. Brassinosteroidmediated regulation of agronomic traits in rice[J]. Plant Cell Reports, 2014, 33(5):683-696.
[6] LI D, WANG L, WANG M, et al. Engineering OsBAK1gene as a molecular tool to improve rice architecture for high yield[J]. Plant Biotechnology Journal, 2009,7(8):791-806.
[7] KIR G, YE H X, NELISSEN H, et al. RNA interference knockdown of brassionsteroid insensitive1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture[J]. Plant Physiology,2015, 169(1):826-839.
[8] CAO Y Y, ZENG H X, KU L X, et al. ZmIBH1-1regulates plant architecture in maize[J]. Journal of Experimental Botany, 2020, 71(10):2943-2955.
[9] REN Z Z, WU L C, KU L X, et al. ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize[J]. Plant Biotechnology Journal, 2020, 18(4):881-883.
[10] SHIMADA A, UEGUCHI-TANAKA M, SAKAMOTO T, et al. The rice Spindly gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis[J]. The Plant Journal, 2006, 48(3):390-402.
[11] TANG Y Y, LIU H H, GUO S Y, et al. OsmiR396d affects gibberellin and brassinosteroid signaling to regulate plant architecture in rice[J]. Plant Physiology,2018, 176(1):946-959.
[12] XIAO Y G, CHEN Y, CHARNIKHOVA T, et al.OsJAR1 is required for JA-regulated floret opening and anther dehiscence in rice[J]. Plant Molecular Biology,2014, 86(1/2):19-33.
[13] LI H C, WANG L J, LIU M S, et al. Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7[J]. Plant Physiology, 2020, 183(3):1184-1199.
[14] SALLAM A, AWADALLA R A, ELSHAMY M M, et al. Genome-wide analysis for root and leaf architecture traits associated with drought tolerance at the seedling stage in a highly ecologically diverse wheat population[J]. Computational and Structural Biotechnology Journal, 2024, 23:870-882.
[15] NIU J Q, SI Y Q, TIAN S Q, et al. A Wheat 660 K SNP array-based high-density genetic map facilitates QTL mapping of flag leaf-related traits in wheat[J].TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2023, 136(3):51.
[16] DU B B, WU J, ISLAM M S, et al. Genome-wide metaanalysis of QTL for morphological related traits of flag leaf in bread wheat[J]. PLoS One, 2022, 17(10):e0276602.
[17] LIU J J, ZHOU J G, TANG H P, et al. A major vernalization-independent QTL for tiller angle on chromosome arm 2BL in bread wheat[J]. The Crop Journal,2022, 10(1):185-193.
[18] CHEN S L, LIU F, WU W X, et al. A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat(Triticum aestivum L.)[J]. TAG Theoretical and Applied Genetics Theoretische Und Angewandte Genetik, 2021, 134(12):3895-3909.
[19] ZHAO L, ZHENG Y T, WANG Y, et al. A HST1-like gene controls tiller angle through regulating endogenous auxin in common wheat[J]. Plant Biotechnology Journal, 2023, 21(1):122-135.
[20] FU L, YAN D, GAO L F, et al. TaIAA15 genes regulate plant architecture in wheat[J]. Journal of Integrative Agriculture, 2022, 21(5):1243-1252.
[21] LIU K Y, CAO J, YU K H, et al. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling[J]. Plant Physiology, 2019, 181(1):179-194.
[22] ZHAO L, YANG Y M, CHEN J C, et al. Dynamic chromatin regulatory programs during embryogenesis of hexaploid wheat[J]. Genome Biology, 2023, 24(1):7.
[23] WU Z B, CHEN S Z, ZHOU M Q, et al. Family-wide characterization of methylated DNA binding ability of Arabidopsis MBDs[J]. Journal of Molecular Biology,2022, 434(2):167404.
[24] STANGELAND B, ROSENHAVE E M, WINGE P, et al. AtMBD8 is involved in control of flowering time in the C24 ecotype of Arabidopsis thaliana[J]. Physiologia Plantarum, 2009, 136(1):110-126.
[25] BERG A, MEZA T J, MAHI?M, et al. Ten members of the Arabidopsis gene family encoding methyl-CpGbinding domain proteins are transcriptionally active and at least one, AtMBD11, is crucial for normal development[J]. Nucleic Acids Research, 2003, 31(18):5291-5304.
[26] YAISH M W F, PENG M S, ROTHSTEIN S J.AtMBD9 modulates Arabidopsis development through the dual epigenetic pathways of DNA methylation and histone acetylation[J]. The Plant Journal:for Cell and Molecular Biology, 2009, 59(1):123-135.
[27] QIAN Y X, REN Q Y, JIANG L Y, et al. Genomewide analysis of maize MBD gene family and expression profiling under abiotic stress treatment at the seedling stage[J]. Plant Biotechnology Reports, 2020, 14(3):323-338.
[28] SPRINGER N M, KAEPPLER S M. Evolutionary divergence of monocot and dicot methyl-CpG-binding domain proteins[J]. Plant Physiology, 2005, 138(1):92-104.
[29] SONG Y Y, TANG Y Y, LIU L T, et al. The methylCpG-binding domain family member PEM1 is essential for Ubisch body formation and pollen exine development in rice[J]. The Plant Journal:for Cell and Molecular Biology, 2022, 111(5):1283-1295.
[30] QU M Y, ZHANG Z J, LIANG T M, et al. Overexpression of a methyl-CpG-binding protein gene OsMBD707leads to larger tiller angles and reduced photoperiod sensitivity in rice[J]. BMC Plant Biology, 2021, 21(1):100.
[31] LI Y C, MENG F R, YIN J, et al. Isolation and comparative expression analysis of six MBD genes in wheat[J]. Biochimica et Biophysica Acta, 2008, 1779(2):90-98.
[32]张新宁,邢真真,李静,等.小麦MBD基因家族的鉴定和特征分析[J].西北植物学报,2021, 41(5):746-756.ZHANG X N, XING Z Z, LI J, et al. Identification and characterization of MBD gene family in wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(5):746-756.
[33] SHI R J, ZHANG J H, LI J Y, et al. Cloning and characterization of TaMBD6 homeologues encoding methyl-CpG-binding domain proteins in wheat[J]. Plant Physiology and Biochemistry:PPB, 2016, 109:1-8.
[34] LIU Q, WANG C, JIAO X Z, et al. Hi-TOM:a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems[J]. Science China Life Sciences, 2019, 62(1):1-7.
[35]周元刚,姚宁,冯浩,等.冬小麦叶片形状系数的变异性[J].干旱地区农业研究,2017, 35(5):1-7.ZHOU Y G, YAO N, FENG H, et al. Variations of leaf shape coefficients of winter wheat[J]. Agricultural Research in the Arid Areas, 2017, 35(5):1-7.
[36] WANG M Y, LI Z J, ZHANG Y E, et al. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses[J]. The Plant Cell, 2021, 33(4):865-881.
[37] ZHANG L H, HE C, LAI Y T, et al. Asymmetric gene expression and cell-type-specific regulatory networks in the root of bread wheat revealed by single-cell multiomics analysis[J]. Genome Biology, 2023, 24(1):65.
[38] QIN L, HAO C Y, HOU J, et al. Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2[J]. BMC Plant Biology, 2014, 14:107.
[39] CAO J, LIU K Y, SONG W J, et al. Pleiotropic function of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE gene TaSPL14 in wheat plant architecture[J]. Planta, 2021, 253(2):44.
[40] HU Z R, YU Y, WANG R, et al. Expression divergence of TaMBD2 homoeologous genes encoding methyl CpG-binding domain proteins in wheat(Triticum aestivum L.)[J]. Gene, 2011, 471(1/2):13-18.
[41] ZHANG Y Y, LI Z J, LIU J Y, et al. Transposable elements orchestrate subgenome-convergent and-divergent transcription in common wheat[J]. Nature Communications, 2022, 13(1):6940.
[42] HIGO A, SAIHARA N, MIURA F, et al. DNA methylation is reconfigured at the onset of reproduction in rice shoot apical meristem[J]. Nature Communications,2020, 11(1):4079.
基本信息:
DOI:10.16445/j.cnki.1000-2340.20240517.001
中图分类号:S512.1
引用信息:
[1]范姗姗,杜金强,张新宁等.小麦TaMBD9基因敲除及其对叶夹角的影响[J].河南农业大学学报,2025,59(01):29-37.DOI:10.16445/j.cnki.1000-2340.20240517.001.
基金信息:
国家重点研发计划项目(2017YFD0301100); 中原学者工作站项目(234400510009)