373 | 4 | 221 |
下载次数 | 被引频次 | 阅读次数 |
【目的】阐明小麦品种郑麦0943耐低氮高温的生理机制,为培育高产高效小麦新品种提供依据。【方法】以周麦18和矮抗58为对照,研究了正常、低氮、高温、低氮高温共同处理,对试验材料气体交换参数、叶绿素荧光参数、氮代谢相关酶活性、抗氧化酶活性、活性氧类物质和丙二醛(MDA)含量的影响。【结果】低氮对小麦光合生理的影响显著大于高温,不同小麦品种的耐低氮高温特性存在显著差异。3种逆境处理下,郑麦0943的光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、PSⅡ最大光化学效率(Fv/Fm),光化学猝灭系数(qP),PSⅠ活性均显著高于周麦18和矮抗58,超氧阴离子生成速率、过氧化氢(H2O2)和丙二醛(MDA)含量均显著低于周麦18和矮抗58,表现出较好的耐低氮高温特性。郑麦0943的硝酸还原酶(NR)、谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT),超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性均显著高于2个对照品种。【结论】低氮对小麦光合生理的影响显著大于高温,郑麦0943较2个对照品种具有更好的耐低氮高温特性,在逆境下具有较高的氮代谢相关酶和抗氧化酶活性,维持相对较高的光化学和碳同化效率。
Abstract:【Objective】 To illuminate the physiological mechanism of Zhengmai 0943 to low nitrogen and high temperature tolerance,and provide theoretical basis for breeding high yield and high efficiency wheat variety.【Method】We took Zhoumai 18(a check variety in national regional trial) and Aikang 58(a wide spread variety) as control materials.The gas exchange parameters,chlorophyll fluorescence parameters,nitrogen metabolism and antioxidant enzyme activity,content of reactive oxygen species and malonaldehyde were measured and analyzed under normal treatment,low nitrogen stress treatment,high temperature stress treatment,low nitrogen and high temperature stress treatment.【Result】The effect of low nitrogen on photosynthetic physiology of wheat was significantly greater than high temperature,and the tolerance of different wheat varieties to low nitrogen and high temperature was significantly different.Under the three stress treatments,the net photosynthetic rate(Pn),transpiration rate(Tr),stomatal conductance(Gs),PSⅡ maximum photochemical efficiency(Fv/Fm),photochemical quenching(qP) and PSⅠ activity of Zhengmai 0943 were significantly higher than those of Zhoumai 18 and Aikang 58.On the other hand,the superoxide anion formation rate,hydrogen peroxide(H2O2) and malondialdehyde(MDA) content of Zhengmai 0943 were significantly lower than those of Zhoumai 18 and Aikang 58,showing better resistance to low nitrogen and high temperature.The activities of nitrate reductase(NR),glutamine synthetase(GS),glutamate synthase(GOGAT),superoxide dismutase(SOD),peroxidase(POD) and catalase(CAT) of Zhengmai 0943were significantly higher than those of Zhoumai 18 and Aikang 58.【Result】 The effect of low nitrogen on the photosynthetic physiology of wheat was significantly greater than that of high temperature.Zhengmai 0943 had better resistance to low nitrogen and high temperature than the two control varieties,showed higher activity of nitrogen metabolism related and antioxidant enzyme under adversity,and maintained higher photochemical and carbon assimilation efficiency.
[1]李洪杰,陈明,李少雅,等.小麦生物育种:进展、机遇和挑战[J].中国基础科学,2022,24(4):1-8.LI H J, CHEN M, LI S Y, et al. Wheat biotech-breeding:progresses, opportunities and challenges[J]. China Basic Science, 2022, 24(4):1-8.
[2] PENG C J, ZHANG Z C, LI Y, et al. Genetic improvement analysis of nitrogen uptake, utilization,translocation, and distribution in Chinese wheat in Henan Province[J]. Field Crops Research, 2022,277:108406.
[3] HE X, QU B Y, LI W J, et al. The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield[J]. Plant Physiology,2015, 169(3):1991-2005.
[4]孔凡美,周秀文,赵艳艳,等.小麦养分效率评价指标和养分高效种质筛选[J].山东农业科学, 2021,53(5):122-127.KONG F M, ZHOU X W, ZHAO Y Y, et al. Screening of indexes for evaluating nutrient efficiency and germplasm with high nutrient efficiency of wheat[J]. Shandong Agricultural Sciences, 2021, 53(5):122-127.
[5]姜瑛,戚秀秀,李祥剑,等.不同小麦品种的氮素利用特性研究[J].麦类作物学报, 2019, 39(6):702-708.JIANG Y, QI X X, LI X J, et al. Study on nitrogen utilization characteristics of different wheat cultivars[J].Journal of Triticeae Crops, 2019, 39(6):702-708.
[6]谢枫,吴跃进,杨阳,等.不同小麦品种籽粒产量对低氮胁迫的响应及其与旗叶光合特性的关系[J].生物学杂志, 2018, 35(6):42-45.XIE F, WU Y J, YANG Y, et al. Yield response of wheat cultivars to low nitrogen stress and its relationship with photosynthetic traits in flag leaves[J]. Journal of Biology, 2018, 35(6):42-45.
[7] SUN A Q, SOMAYANDA I, SEBASTIAN S V, et al.Heat stress during flowering affects time of day of flowering, seed set, and grain quality in spring wheat[J].Crop Science, 2018, 58(1):380-392.
[8] WANG C W, WEN D X, SUN A Q, et al. Changes in antioxidant enzyme activity and gene expression in response to high temperature stress in wheat seedlings[J]. Journal of Cereal Science, 2014, 60(3):653-659.
[9]金正勋,王思宇,王珊,等.外源激素对水稻籽粒碳氮代谢相关酶基因表达影响[J].东北农业大学学报, 2020, 51(7):1-9.JIN Z X, WANG S Y, WANG S, et al. Effect of exogenous hormones on gene expression of carbon and nitrogen metabolism-related enzymes in rice grains[J]. Journal of Northeast Agricultural University, 2020, 51(7):1-9.
[10] LI S, TIAN Y H, WU K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560:595-600.
[11] GENTY B, BRIANTAIS J M, BAKER N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimica et Biophysica Acta(BBA)-General Subjects, 1989, 990(1):87-92.
[12] STRASSER R J, TSIMILLI-MICHAEL M, QIANG S,et al. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis[J]. Biochimica et Biophysica Acta, 2010, 1797(6/7):1313-1326.
[13] TAN W, LIU J, DAI T, et al. Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging[J]. Photosynthetica, 2008, 46(1):21-27.
[14] ELSTNER E F, HEUPEL A. Inhibition of nitrite formation from hydroxylammoniumchloride:a simple assay for superoxide dismutase[J]. Analytical Biochemistry,1976, 70(2):616-620.
[15] BRENNAN T, FRENKEL C. Involvement of hydrogen peroxide in the regulation of senescence in pear[J].Plant Physiology, 1977, 59(3):411-416.
[16] HEATH R L, PACKER L. Photoperoxidation in isolated chloroplasts. I. kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125(1):189-198.
[17]江文文,尹燕枰,王振林,等.花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响[J].作物学报, 2014, 40(5):942-949.JIANG W W, YIN Y P, WANG Z L, et al. Effects of postponed application of nitrogen fertilizer on yield and physiological characteristics of flag leaf in wheat under post-anthesis heat stress[J]. Acta Agronomica Sinica,2014, 40(5):942-949.
[18]程宝钰,胡发龙,韩梅,等.麦后复种绿肥方式及施氮制度对土壤有机碳和小麦产量的影响[J/OL].甘肃农业大学学报, 1-14[2024-03-25]. https://kns. cnki.net/kcms/detail/62. 1055. s. 20231206. 1057. 031. html.CHENG B Y, HU F L, HAN M, et al. Effects of multiple cropping green manure methods and nitrogen fertilization regimes on soil organic carbon and wheat yield after wheat[J/OL]. Journal of Gansu Agricultural University,1-14[2024-03-25]. https://kns. cnki. net/kcms/detail/62. 1055. s. 20231206. 1057. 031. html.
[19]李敏,苏慧,李阳阳,等.黄淮海麦区小麦耐热性分析及其鉴定指标的筛选[J].中国农业科学, 2021,54(16):3381-3393.LI M, SU H, LI Y Y, et al. Heat tolerance analysis and identification index screening of wheat in HuangHuai-Hai wheat region[J]. Scientia Agricultura Sinica,2021, 54(16):3381-3393.
[20] XU G H, FAN X R, MILLER A J. Plant nitrogen assimilation and use efficiency[J]. Annual Review of Plant Biology, 2012, 63:153-182.
[21] SUN L, WEN J J, PENG H R, et al. The genetic and molecular basis for improving heat stress tolerance in wheat[J]. aBIOTECH, 2022, 3(1):25-39.
[22]吕魏,苏靖文,余晓燚,等. 2种氮形态对水稻产量和光合特性影响的生理机制[J].南方农业学报,2023, 54(6):1780-1788.LV W, SU J W, YU X Y, et al. Physiological mechanism of the effects of two nitrogen forms on yield and photosynthetic characteristics of rice[J]. Journal of Southern Agriculture, 2023, 54(6):1780-1788.
[23]杨卫丽,黄福灯,曹珍珍,等.高温胁迫对水稻光合PSⅡ系统伤害及其与叶绿体D1蛋白间关系[J].作物学报, 2013, 39(6):1060-1068.YANG W L, HUANG F D, CAO Z Z, et al. Effects of high temperature stress on PSⅡfunction and its relation to D1 protein in chloroplast thylakoid in rice flag leaves[J].Acta Agronomica Sinica, 2013, 39(6):1060-1068.
[24] PANG J Y, PALTA J A, REBETZKE G J, et al.Wheat genotypes with high early vigour accumulate more nitrogen and have higher photosynthetic nitrogen use efficiency during early growth[J]. Functional Plant Biology,2014, 41(2):215-222.
[25]剧成欣,周著彪,赵步洪,等.不同氮敏感性粳稻品种的氮代谢与光合特性比较[J].作物学报, 2018,44(3):405-413.JU C X, ZHOU Z B, ZHAO B H, et al. Comparison in nitrogen metabolism and photosynthetic characteristics between Japonica rice varieties differing in nitrogen sensitivity[J]. Acta Agronomica Sinica, 2018, 44(3):405-413.
[26]侯宪斌,易强,滕峥,等.不同玉米种质花期对干旱和高温胁迫的响应[J].南方农业学报, 2023, 54(6):1598-1611.HOU X B, YI Q, TENG Z, et al. Response of different maize germplasms to drought stress and heat stress at anthesis period[J]. Journal of Southern Agriculture,2023, 54(6):1598-1611.
[27]李川,张盼盼,张美微,等.不同氮效率玉米品种响应氮肥减施的差异表达基因分析[J].河南农业科学, 2022, 51(9):10-24.LI C, ZHANG P P, ZHANG M W, et al. Analysis of differentially expressed genes in two different nitrogen efficiency maize varieties in response to nitrogen reduction[J]. Journal of Henan Agricultural Sciences, 2022,51(9):10-24.
基本信息:
DOI:10.16445/j.cnki.1000-2340.20240301.001
中图分类号:S512.1
引用信息:
[1]齐学礼,王永霞,陈鹏等.不同胁迫下郑麦0943的耐低氮高温特性研究[J].河南农业大学学报,2024,58(02):187-194.DOI:10.16445/j.cnki.1000-2340.20240301.001.
基金信息:
国家小麦产业技术体系项目(CARS-03-7);; 国家重点研发计划项目(2022YFD1200205)