345 | 1 | 283 |
下载次数 | 被引频次 | 阅读次数 |
森林更新幼苗的生长和防御的优先度受环境因素和苗木发育特征的影响,同时又反过来影响着幼苗的生理特征。生物量分配和碳储存性状特征能够表征幼苗的成活、生长和生态适应能力。因此,通过研究森林更新幼苗生物量分配策略,探明幼苗器官中非结构性碳水化合物(non-structural carbohydrate,NSC)含量的季节动态和碳储存变异特征,对于深入理解幼苗生长-防御权衡的变异规律及其调控机制,指导森林可持续经营具有重要的理论意义和实践价值。
Abstract:The growth and defense priorities of the forest regenerated seedlings are influenced by environmental factors and developmental characteristics, which in turn affects the physiological characteristics of the seedlings. Biomass allocation and carbon storage traits can represent the seedling abilities of survival, growth and ecological adaptability. Therefore, the seasonal dynamics of non-structural carbohydrate(NSC) concentration and the variation in carbon storage characteristics within seedling organs were explored through the study of forest regenerated seedling biomass allocation strategy. The findings deepen the understanding of the variation rules and regulating mechanism of seedling growthdefense tradeoff, providing important theoretical significance and practical value to guide the sustainable management of forests.
[1] SEIDL R, THOM D, KAUTZ M, et al. Forest disturbances under climate change[J]. Nature Climate Change, 2017, 7:395-402.
[2] United Nations Environment Programme. The state of the world’s forests:forests, biodiversity and people[R/OL]. Rome:FAO, 2020[2021-06-22]. http://resp.llas. ac. cn/C666/handle/2XK7JSWQ/270906.
[3] WIECZYNSKI D J, BOYLE B, BUZZARD V, et al.Climate shapes and shifts functional biodiversity in forests worldwide[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2):587-592.
[4] HAMMOND M E, POKORNYR, OKAE-ANTI D, et al. The composition and diversity of natural regeneration of tree species in gaps under different intensities of forest disturbance[J]. Journal of Forestry Research,2021, 32(5):1843-1853.
[5] DOBROWOLSKA D. Effect of stand density on oak regeneration in flood plain forests in Lower Silesia,Poland[J]. Forestry:an International Journal of Forest Research, 2008, 81(4):511-523.
[6]陈超凡,覃林,段艺璇,等.不同经营模式对蒙古栎次生林叶功能性状和土壤理化性质的影响[J].生态学报,2018, 38(23):8371-8382.CHEN C F, QIN L, DUAN Y X, et al. Effects of different management models on leaf functional traits and soil physical and chemical properties of natural secondary forest of Quercus mongolica[J]. Acta Ecologica Sinica, 2018, 38(23):8371-8382.
[7] SILVA K F O E, MELO B C V, MOREIRA T B, et al.Darkness and low-light alter reserve mobilization during the initial growth of soybean(Glycine max(L.)Merrill)[J]. Theoretical and Experimental Plant Physiology,2021, 33(1):55-68.
[8] GADOW K V. Stabilizing forest productivity and resi-lience at multiple scales[J]. Forest Ecosystems,2023, 10:100136.
[9]付梦瑶,崔秋芳,吴明,等.松栎混交林中马尾松的种内种间竞争[J].河南农业大学学报,2016, 50(3):311-317.FU M Y, CUI Q F, WU M, et al. Intraspecific and interspecific competition of Pinus massoniana and Quercus acutissima mixed artificial forest[J]. Journal of Henan Agricultural University, 2016, 50(3):311-317.
[10]赵佳宝,杨喜田,徐星凯,等.马尾松-麻栎混交林土壤溶解性有机碳氮空间分布特征[J].水土保持学报,2016, 30(3):213-219.ZHAO J B, YANG X T, XU X K, et al. Spatial distribution characteristic of soil dissolved organic carbon and nitrogen under the Pinus massoniana-Quercus acutissima mixed forest[J]. Journal of Soil and Water Conservation, 2016, 30(3):213-219.
[11]闫东锋,郭丹丹,吴桂藏,等.栎类天然次生林不同组分及土壤碳氮分布对森林抚育的响应[J].浙江农林大学学报,2017, 34(2):215-224.YAN D F, GUO D D, WU G C, et al. Carbon and nitrogen distribution with forest tending in a natural secondary oak forest[J]. Journal of Zhejiang A&F University,2017, 34(2):215-224.
[12] YU F, WANG D X, SHI X X, et al. Effects of environmental factors on tree seedling regeneration in a pineoak mixed forest in the Qinling Mountains, China[J].Journal of Mountain Science, 2013, 10(5):845-853.
[13] CHAI Z Z, FAN D F, WANG D X. Environmental factors and underlying mechanisms of tree community assemblages of pine-oak mixed forests in the Qinling Mountains, China[J]. Journal of Plant Biology, 2016,59(4):347-357.
[14] ZHOU G, LIU Q J, XU Z Z, et al. How can the shade intolerant Korean pine survive under dense deciduous canopy?[J]. Forest Ecology and Management, 2020,457:117735.
[15] FRIDLEY J D, BAUERLE T L, CRADDOCK A, et al.Fast but steady:an integrated leaf-stem-root trait syndrome for woody forest invaders[J]. Ecology Letters,2022, 25(4):900-912.
[16] SHOVON T A, GAGNON D, VANDERWEL M C.Boreal conifer seedling responses to experimental competition removal during summer drought[J]. Ecosphere,2021, 12(2):31-43.
[17]胡晓静,张文辉,何景峰,等.不同生境栓皮栎天然更新幼苗植冠构型分析[J].生态学报,2015, 35(3):788-795.HU X J, ZHANG W H, HE J F, et al. Architectural analysis of crown geometry of Quercus variablis Bl.natural regenerative seedlings in different habitats[J].Acta Ecologica Sinica, 2015, 35(3):788-795.
[18]蒋欣梅,张雪,程瑶,等.光强对蒲公英生长、活性成分积累及抗氧化活性的影响[J].东北农业大学学报,2023, 54(3):26-34.JIANG X M, ZHANG X, CHENG Y, et al. Effects of light intensity on growth, accumulation of active constituents and antioxidant activities of Taraxacum mongolicum Hand.-Mazz[J]. Journal of Northeast Agricultural University, 2023, 54(3):26-34.
[19] SEVILLANO I, SHORT I, GRANT J, et al. Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings[J]. Forest Ecology and Management, 2016, 374:11-19.
[20] CLARK D B, CLARK D A. Abundance, growth and mortality of very large trees in neotropical lowland rain forest[J]. Forest Ecology and Management, 1996, 80(1/2/3):235-244.
[21] VALLADARES F, LAANISTO L, NIINEMETSü,et al.Shedding light on shade:ecological perspectives of understorey plant life[J]. Plant Ecology&Diversity,2016, 9(3):237-251.
[22]黄朗,朱光玉,康立,等.湖南栎类天然次生林幼树更新特征及影响因子[J].生态学报,2019, 39(13):4900-4909.HUANG L, ZHU G Y, KANG L, et al. Regeneration characteristics and related factors affecting saplings in Quercus spp. natural secondary forests in Hunan Province, China[J]. Acta Ecologica Sinica, 2019, 39(13):4900-4909.
[23] O’CONNELL B M, KELTY M J. Crown architecture of understory and open-grown white pine(Pinus strobus L.)saplings[J]. Tree Physiology, 1994, 14(1):89-102.
[24] LIU P C, WANG W D, BAI Z Q, et al. Nutrient loads and ratios both explain the coexistence of dominant tree species in a boreal forest in Xinjiang, Northwest China[J]. Forest Ecology and Management, 2021, 491:119198.
[25] WANG W S, ZHAO X Q, LI M, et al. Complex molecular mechanisms underlying seedling salt tolerance in rice revealed by comparative transcriptome and metabolomic profiling[J]. Journal of Experimental Botany, 2016, 67(1):405-419.
[26] KEEP T, SAMPOUX J P, BARRE P, et al. To grow or survive:which are the strategies of a perennial grass to face severe seasonal stress?[J]. Functional Ecology,2021, 35(5):1145-1158.
[27] AREND M, LINK R M, PATTHEY R, et al. Rapid hydraulic collapse as cause of drought-induced mortality in conifers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(16):e2025251118.
[28] MEIRA-NETO J A A, NUNES C?NDIDO H M,MIAZAKI?,et al. Drivers of the growth-survival tradeoff in a tropical forest[J]. Journal of Vegetation Science,2019, 30(6):1184-1194.
[29] DANG Q L, MARFO J, DU F G, et al. CO2 stimulation and response mechanisms vary with light supply in boreal conifers[J]. Journal of Plant Ecology, 2021, 14(2):291-300.
[30]王娇,关欣,张伟东,等.杉木幼苗生物量分配格局对氮添加的响应[J].植物生态学报,2021, 45(11):1231-1240.WANG J, GUAN X, ZHANG W D, et al. Responses of biomass allocation patterns to nitrogen addition of Cunninghamia lanceolata seedlings[J]. Chinese Journal of Plant Ecology, 2021, 45(11):1231-1240.
[31]余碧云,张文辉,胡晓静,等.栓皮栎地上部分构型及生物量分配[J].应用生态学报,2015, 26(8):2265-2272.YU B Y, ZHANG W H, HU X J, et al. Aboveground architecture and biomass distribution of Quercus variabilis[J]. Chinese Journal of Applied Ecology, 2015, 26(8):2265-2272.
[32]王中磊,高贤明.锐齿槲栎林的天然更新:坚果、幼苗库和径级结构[J].生态学报,2005, 25(5):986-993.WANG Z L, GAO X M. The regeneration of Quercus aliena var. acuteserrata:acorn status, seedling pool and size structure[J]. Acta Ecologica Sinica, 2005, 25(5):986-993.
[33] LHOTKA J M. Effect of gap size on mid-rotation stand structure and species composition in a naturally regenerated mixed broadleaf forest[J]. New Forests,2013, 44(3):311-325.
[34] MARTELLETTI S, LINGUA E, MELONI F, et al.Microsite manipulation in lowland oak forest restoration results in indirect effects on acorn predation[J]. Forest Ecology and Management, 2018, 411:27-34.
[35] YI X F, WANG Z Y. The importance of cotyledons for early-stage oak seedlings under different nutrient levels:a multi-species study[J]. Journal of Plant Growth Regulation, 2016, 35(1):183-189.
[36] SALA A, WOODRUFF D R, MEINZER F C. Carbon dynamics in trees:feast or famine?[J]. Tree Physiology,2012, 32(6):764-775.
[37] EL OMARI B. Accumulation versus storage of total nonstructural carbohydrates in woody plants[J]. Trees,2022, 36(3):869-881.
[38] MARTíNEZ-VILALTA J, SALA A N, ASENSIO D,et al. Dynamics of non-structural carbohydrates in terrestrial plants:a global synthesis[J]. Ecological Monographs, 2016, 86(4):495-516.
[39] KOBE R K. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth[J]. Oikos, 1997, 80(2):226.
[40] MYERS J A, KITAJIMA K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest[J]. Journal of Ecology, 2007, 95(2):383-395.
[41] CHAPIN F S, SCHULZE E, MOONEY H A. The ecology and economics of storage in plants[J]. Annual Review of Ecology and Systematics, 1990, 21:423-447.
[42] SANZ-PéREZ V, CASTRO-DíEZ P, JOFFRE R. Seasonal carbon storage and growth in Mediterranean tree seedlings under different water conditions[J]. Tree Physiology, 2009, 29(9):1105-1116.
[43] MACALLISTER S, MENCUCCINI M, SOMMER U,et al. Drought-induced mortality in Scots pine:opening the metabolic black box[J]. Tree Physiology, 2019, 39(8):1358-1370.
[44] MITCHELL P J, O’GRADY A P, TISSUE D T, et al.Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality[J]. The New Phytologist,2013, 197(3):862-872.
[45]李亚楠,张淞著,张藤子,等.干旱-高钙对麻栎幼苗非结构性碳水化合物含量和分配的影响[J].生态学报,2020, 40(7):2277-2284.LI Y N, ZHANG S Z, ZHANG T Z, et al. Effects of drought-high calcium on non-structural carbohydrate contents of Quercus acutissima[J]. Acta Ecologica Sinica, 2020, 40(7):2277-2284.
[46]王凯,逄迎迎,吕林有,等.杨树幼苗自然干旱过程中非结构性碳水化合物变化[J].生态学杂志,2021,40(7):1969-1978.WANG K, PANG Y Y, LYU L Y, et al. Changes of non-structural carbohydrates of Populus×xiaozhuanica cv. Zhangwu seedlings during process of natural drought[J]. Chinese Journal of Ecology, 2021, 40(7):1969-1978.
[47] MENSAH S, KAKA?R G, SEIFERT T. Patterns of biomass allocation between foliage and woody structure:the effects of tree size and specific functional traits[J].Annals of Forest Research, 2016, 59(1):49-60.
[48]王明君,白朕银,贾傲梅,等.氮沉降、增温和降水变化对草地碳固存的影响研究进展[J].东北农业大学学报,2023, 54(6):89-96.WANG M J, BAI Z Y, JIA A M, et al. Research progress on effects of nitrogen deposition, warming and precipitation pattern changes on grassland carbon sequestration[J]. Journal of Northeast Agricultural University, 2023, 54(6):89-96.
[49] YAMASHITA N, OKUDA S, SUWA R, et al. Impact of leaf removal on initial survival and growth of container-grown and bare-root seedlings of Hinoki cypress(Chamaecyparis obtusa)[J]. Forest Ecology and Management, 2016, 370:76-82.
[50] THAKUR S, KUMAR B M, KUNHAMU T K. Coarse root biomass, carbon, and nutrient stock dynamics of different stem and crown classes of silver oak(Grevillea robusta A. Cunn. ex. R. Br.)plantation in Central Kerala,India[J]. Agroforestry Systems, 2015, 89(5):869-883.
[51] STROCK C F, BURRIDGE J, MASSAS A S F, et al.Seedling root architecture and its relationship with seed yield across diverse environments in Phaseolus vulgaris[J]. Field Crops Research, 2019, 237:53-64.
[52] POORTER H, JAGODZINSKI A M, RUIZ-PEINADO R, et al. How does biomass distribution change with size and differ among species? an analysis for 1200plant species from five continents[J]. The New Phytologist, 2015, 208(3):736-749.
[53] HARTMANN H, ADAMS H D, HAMMOND W M,et al. Identifying differences in carbohydrate dynamics of seedlings and mature trees to improve carbon allocation in models for trees and forests[J]. Environmental and Experimental Botany, 2018, 152:7-18.
[54] PERNOT C, THIFFAULT N, DESROCHERS A. Root system origin and structure influence planting shock of black spruce seedlings in boreal microsites[J]. Forest Ecology and Management, 2019, 433:594-605.
[55]夏菲,王孝安,郭华,等.不同龄级辽东栎幼苗根系形态对幼苗生长的影响[J].中国农学通报,2012,28(10):32-36.XIA F, WANG X A, GUO H, et al. Effects of root morphology on seedling growth of Quercus liaotungensis in different age classes on Loess Plateau[J]. Chinese Agricultural Science Bulletin, 2012, 28(10):32-36.
[56] ZHU Y, QUEENBOROUGH S A, CONDIT R, et al.Density-dependent survival varies with species lifehistory strategy in a tropical forest[J]. Ecology Letters,2018, 21(4):506-515.
[57] HEDWALL P O, HOLMSTR?M E, LINDBLADH M,et al. Concealed by darkness:how stand density can override the biodiversity benefits of mixed forests[J].Ecosphere, 2019, 10(8):e02835.
[58] DOS SANTOS V A H F, FERREIRA M J. Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings? a light-induced plasticity test in a secondary forest enrichment planting[J]. Forest Ecology and Management, 2020, 460:117900.
[59] UMA?A M N, SWENSON N G, MARCHAND P, et al.Relating leaf traits to seedling performance in a tropical forest:building a hierarchical functional framework[J].Ecology, 2021, 102(7):e03385.
[60] MIRZAHOSSEINI Z, SHABANI L, SABZALIAN M R,et al. Comparative physiological and proteomic analysis of Arabidopsis thaliana revealed differential wound stress responses following the exposure to different LED light sources[J]. Environmental and Experimental Botany,2020, 169:103895.
[61] CEJUDO F J, SANDALIO L M, VAN BREUSEGEM F.Understanding plant responses to stress conditions:redox-based strategies[J]. Journal of Experimental Botany, 2021, 72(16):5785-5788.
[62] NICOTRA A B, ATKIN O K, BONSER S P, et al.Plant phenotypic plasticity in a changing climate[J].Trends in Plant Science, 2010, 15(12):684-692.
[63] FRESCHET G T, VIOLLE C, BOURGET M Y, et al.Allocation, morphology, physiology, architecture:the multiple facets of plant above-and below-ground responses to resource stress[J]. The New Phytologist,2018, 219(4):1338-1352.
[64] UMA?A M N, CAO M, LIN L X, et al. Trade-offs in above-and below-ground biomass allocation influencing seedling growth in a tropical forest[J]. Journal of Ecology, 2021, 109(3):1184-1193.
[65] WEINER J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(4):207-215.
[66]于丽敏,王传宽,王兴昌.三种温带树种非结构性碳水化合物的分配[J].植物生态学报,2011, 35(12):1245-1255.YU L M, WANG C K, WANG X C. Allocation of nonstructural carbohydrates for three temperate tree species in Northeast China[J]. Chinese Journal of Plant Ecology,2011, 35(12):1245-1255.
[67] GIERTYCH M J, KAROLEWSKI P, OLEKSYN J.Carbon allocation in seedlings of deciduous tree species depends on their shade tolerance[J]. Acta Physiologiae Plantarum, 2015, 37(10):216.
基本信息:
DOI:10.16445/j.cnki.1000-2340.20240523.001
中图分类号:S718.5
引用信息:
[1]赵佳宝,冯志培,宗婉莹等.森林更新幼苗生长-防御权衡的调节机制研究进展[J].河南农业大学学报,2025,59(01):13-20.DOI:10.16445/j.cnki.1000-2340.20240523.001.
基金信息:
国家自然科学基金项目(31570613); 河南省科技兴林项目(YLK202209); 中国博士后科学基金面上项目(2021M690922); 河南省自然科学基金项目(242300420486)